non-abelian, soluble, monomial
Aliases: C32⋊D20, C5⋊1S3≀C2, C32⋊C4⋊D5, (C3×C15)⋊2D4, D15⋊S3⋊2C2, C3⋊S3.2D10, (C5×C32⋊C4)⋊1C2, (C5×C3⋊S3).3C22, SmallGroup(360,134)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C32 — C5×C3⋊S3 — C32⋊D20 |
C1 — C5 — C3×C15 — C5×C3⋊S3 — D15⋊S3 — C32⋊D20 |
C3×C15 — C5×C3⋊S3 — C32⋊D20 |
Generators and relations for C32⋊D20
G = < a,b,c,d | a3=b3=c20=d2=1, ab=ba, cac-1=b, dad=cbc-1=a-1, bd=db, dcd=c-1 >
Character table of C32⋊D20
class | 1 | 2A | 2B | 2C | 3A | 3B | 4 | 5A | 5B | 6A | 6B | 10A | 10B | 15A | 15B | 15C | 15D | 20A | 20B | 20C | 20D | |
size | 1 | 9 | 30 | 30 | 4 | 4 | 18 | 2 | 2 | 60 | 60 | 18 | 18 | 8 | 8 | 8 | 8 | 18 | 18 | 18 | 18 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ5 | 2 | -2 | 0 | 0 | 2 | 2 | 0 | 2 | 2 | 0 | 0 | -2 | -2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ6 | 2 | 2 | 0 | 0 | 2 | 2 | -2 | -1-√5/2 | -1+√5/2 | 0 | 0 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | 1+√5/2 | 1+√5/2 | 1-√5/2 | 1-√5/2 | orthogonal lifted from D10 |
ρ7 | 2 | 2 | 0 | 0 | 2 | 2 | 2 | -1-√5/2 | -1+√5/2 | 0 | 0 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | orthogonal lifted from D5 |
ρ8 | 2 | 2 | 0 | 0 | 2 | 2 | 2 | -1+√5/2 | -1-√5/2 | 0 | 0 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | orthogonal lifted from D5 |
ρ9 | 2 | 2 | 0 | 0 | 2 | 2 | -2 | -1+√5/2 | -1-√5/2 | 0 | 0 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | 1-√5/2 | 1-√5/2 | 1+√5/2 | 1+√5/2 | orthogonal lifted from D10 |
ρ10 | 2 | -2 | 0 | 0 | 2 | 2 | 0 | -1+√5/2 | -1-√5/2 | 0 | 0 | 1-√5/2 | 1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -ζ43ζ54+ζ43ζ5 | ζ43ζ54-ζ43ζ5 | ζ4ζ53-ζ4ζ52 | -ζ4ζ53+ζ4ζ52 | orthogonal lifted from D20 |
ρ11 | 2 | -2 | 0 | 0 | 2 | 2 | 0 | -1-√5/2 | -1+√5/2 | 0 | 0 | 1+√5/2 | 1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | ζ4ζ53-ζ4ζ52 | -ζ4ζ53+ζ4ζ52 | ζ43ζ54-ζ43ζ5 | -ζ43ζ54+ζ43ζ5 | orthogonal lifted from D20 |
ρ12 | 2 | -2 | 0 | 0 | 2 | 2 | 0 | -1-√5/2 | -1+√5/2 | 0 | 0 | 1+√5/2 | 1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -ζ4ζ53+ζ4ζ52 | ζ4ζ53-ζ4ζ52 | -ζ43ζ54+ζ43ζ5 | ζ43ζ54-ζ43ζ5 | orthogonal lifted from D20 |
ρ13 | 2 | -2 | 0 | 0 | 2 | 2 | 0 | -1+√5/2 | -1-√5/2 | 0 | 0 | 1-√5/2 | 1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | ζ43ζ54-ζ43ζ5 | -ζ43ζ54+ζ43ζ5 | -ζ4ζ53+ζ4ζ52 | ζ4ζ53-ζ4ζ52 | orthogonal lifted from D20 |
ρ14 | 4 | 0 | 2 | 0 | -2 | 1 | 0 | 4 | 4 | -1 | 0 | 0 | 0 | 1 | -2 | -2 | 1 | 0 | 0 | 0 | 0 | orthogonal lifted from S3≀C2 |
ρ15 | 4 | 0 | 0 | -2 | 1 | -2 | 0 | 4 | 4 | 0 | 1 | 0 | 0 | -2 | 1 | 1 | -2 | 0 | 0 | 0 | 0 | orthogonal lifted from S3≀C2 |
ρ16 | 4 | 0 | -2 | 0 | -2 | 1 | 0 | 4 | 4 | 1 | 0 | 0 | 0 | 1 | -2 | -2 | 1 | 0 | 0 | 0 | 0 | orthogonal lifted from S3≀C2 |
ρ17 | 4 | 0 | 0 | 2 | 1 | -2 | 0 | 4 | 4 | 0 | -1 | 0 | 0 | -2 | 1 | 1 | -2 | 0 | 0 | 0 | 0 | orthogonal lifted from S3≀C2 |
ρ18 | 8 | 0 | 0 | 0 | -4 | 2 | 0 | -2-2√5 | -2+2√5 | 0 | 0 | 0 | 0 | -1+√5/2 | 1-√5 | 1+√5 | -1-√5/2 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ19 | 8 | 0 | 0 | 0 | 2 | -4 | 0 | -2-2√5 | -2+2√5 | 0 | 0 | 0 | 0 | 1-√5 | -1+√5/2 | -1-√5/2 | 1+√5 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ20 | 8 | 0 | 0 | 0 | -4 | 2 | 0 | -2+2√5 | -2-2√5 | 0 | 0 | 0 | 0 | -1-√5/2 | 1+√5 | 1-√5 | -1+√5/2 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ21 | 8 | 0 | 0 | 0 | 2 | -4 | 0 | -2+2√5 | -2-2√5 | 0 | 0 | 0 | 0 | 1+√5 | -1-√5/2 | -1+√5/2 | 1-√5 | 0 | 0 | 0 | 0 | orthogonal faithful |
(2 27 17)(4 19 29)(6 11 21)(8 23 13)(10 15 25)
(1 26 16)(3 18 28)(5 30 20)(7 22 12)(9 14 24)
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30)
(1 9)(2 8)(3 7)(4 6)(11 29)(12 28)(13 27)(14 26)(15 25)(16 24)(17 23)(18 22)(19 21)
G:=sub<Sym(30)| (2,27,17)(4,19,29)(6,11,21)(8,23,13)(10,15,25), (1,26,16)(3,18,28)(5,30,20)(7,22,12)(9,14,24), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30), (1,9)(2,8)(3,7)(4,6)(11,29)(12,28)(13,27)(14,26)(15,25)(16,24)(17,23)(18,22)(19,21)>;
G:=Group( (2,27,17)(4,19,29)(6,11,21)(8,23,13)(10,15,25), (1,26,16)(3,18,28)(5,30,20)(7,22,12)(9,14,24), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30), (1,9)(2,8)(3,7)(4,6)(11,29)(12,28)(13,27)(14,26)(15,25)(16,24)(17,23)(18,22)(19,21) );
G=PermutationGroup([[(2,27,17),(4,19,29),(6,11,21),(8,23,13),(10,15,25)], [(1,26,16),(3,18,28),(5,30,20),(7,22,12),(9,14,24)], [(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)], [(1,9),(2,8),(3,7),(4,6),(11,29),(12,28),(13,27),(14,26),(15,25),(16,24),(17,23),(18,22),(19,21)]])
G:=TransitiveGroup(30,95);
Matrix representation of C32⋊D20 ►in GL6(𝔽61)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 60 | 1 | 0 | 0 |
0 | 0 | 60 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 60 |
0 | 0 | 0 | 0 | 1 | 60 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 60 | 1 | 0 | 0 |
0 | 0 | 60 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 60 | 1 |
0 | 0 | 0 | 0 | 60 | 0 |
15 | 9 | 0 | 0 | 0 | 0 |
52 | 15 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
9 | 46 | 0 | 0 | 0 | 0 |
46 | 52 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 60 | 0 |
0 | 0 | 0 | 0 | 0 | 60 |
0 | 0 | 60 | 0 | 0 | 0 |
0 | 0 | 0 | 60 | 0 | 0 |
G:=sub<GL(6,GF(61))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,60,60,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,60,60],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,60,60,0,0,0,0,1,0,0,0,0,0,0,0,60,60,0,0,0,0,1,0],[15,52,0,0,0,0,9,15,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,1,0,0],[9,46,0,0,0,0,46,52,0,0,0,0,0,0,0,0,60,0,0,0,0,0,0,60,0,0,60,0,0,0,0,0,0,60,0,0] >;
C32⋊D20 in GAP, Magma, Sage, TeX
C_3^2\rtimes D_{20}
% in TeX
G:=Group("C3^2:D20");
// GroupNames label
G:=SmallGroup(360,134);
// by ID
G=gap.SmallGroup(360,134);
# by ID
G:=PCGroup([6,-2,-2,-2,-3,3,-5,73,31,579,585,111,244,130,376,10373]);
// Polycyclic
G:=Group<a,b,c,d|a^3=b^3=c^20=d^2=1,a*b=b*a,c*a*c^-1=b,d*a*d=c*b*c^-1=a^-1,b*d=d*b,d*c*d=c^-1>;
// generators/relations
Export
Subgroup lattice of C32⋊D20 in TeX
Character table of C32⋊D20 in TeX